
Robot Manipulators
 Position, Orientation and Coordinate Transformations

Fig. 1: Programmable Universal Manipulator Arm (PUMA)

A robot manipulator is an electronically controlled mechanism, consisting of multiple segments,

that performs tasks by interacting with its environment. They are also commonly referred to as 

robotic arms. Robot manipulators are extensively used in the industrial manufacturing sector 

and also have many other specialized applications (for example, the Canadarm was used on 

space shuttles to manipulate payloads). The study of robot manipulators involves dealing with 

the positions and orientations of the several segments that make up the manipulators. This 

module introduces the basic concepts that are required to describe these positions and 

orientations of rigid bodies in space and perform coordinate transformations. 



  

Manipulators

Manipulators are composed of an assembly of links and joints. Links are defined as the rigid

sections that make up the mechanism and joints are defined as the connection between two

links. The device attached to the manipulator which interacts with its environment to perform

tasks is called the end-effector. In Fig. 2, link 6 is the end effector.

Fig. 2: Links and joints

Types of Joints

Joints allow restricted relative motion between two links. The following table describes 

five types of joints. 



Table 1: Types of joints

Name of joint Representati
on

Description

Revolute Allows relative rotation about one axis. 

Cylindrical Allows relative rotation and translation about one axis.

Prismatic Allows relative translation about one axis.

Spherical Allows three degrees of rotational freedom about the 
center of the joint. Also known as a ball-and-socket 
joint.

Planar Allows relative translation on a plane and relative 
rotation about an axis perpendicular to the plane. 

Some Classification of Manipulators

Manipulators can be classified according to a variety of criteria. The following are two of 

these criteria:

By Motion Characteristics

Planar manipulator: A manipulator is called a planar manipulator if all the moving 

links move in planes parallel to one another. 

Spherical manipulator: A manipulator is called a spherical manipulator if all the links 

perform spherical motions about a common stationary point.

Spatial manipulator: A manipulator is called a spatial manipulator if at least one of 

the links of the mechanism possesses a general spatial motion.  



By Kinematic Structure

Open-loop manipulator (or serial robot): A manipulator is called an open-loop 

manipulator if its links form an open-loop chain.

Parallel manipulator: A manipulator is called a parallel manipulator if it is made up of

a closed-loop chain.

Hybrid manipulator: A manipulator is called a hybrid manipulator if it consists of 

open loop and closed loop chains.

Degrees of Freedom

The number of degrees of freedom of a mechanism are defined as the number of 

independent variables that are required to completely identify its configuration in space. 

The number of degrees of freedom for a manipulator can be calculated as 

... Eq. (1)

where  is the number of links (this includes the ground link),  is the number of joints,  

is the number of degrees of freedom of the  joint and  is  for planar mechanisms and 
 for spatial mechanisms. 

Vector Kinematics and Coordinate Transformations

This section covers the concepts required to specify the location of an object in space. This 

involves specifying the position of a point on the object and the orientation of the object with 

respect to a reference frame. 

Description of a Position



The position of any point in space, relative to a reference frame, can be described by a 

3x1 position vector. For example, the position of point P (see Fig. 3) with respect to 

frame A can be written as

Eq. (2)

where ,  and  are the magnitudes of the projections of the line joining the point  and

the origin  on the and  axes respectively.   

Fig. 3: Position vector



Description of an Orientation

The orientation of a body in space can be described by attaching a coordinate system to 

it and then describing the vectors of its coordinate axes relative to a known frame of 

reference. For example, the coordinate axes of Frame B (see Fig. 4) can be described 

relative to a known coordinate system A by the following unit vectors:

... Eq. (3)

These three vectors can be combined to achieve a 3x3 matrix called a rotation matrix.

 

... Eq. (4)
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Fig. 4: Components of the rotation matrix of Frame B w.r.t Frame A

Rotation Matrix Properties

All the columns of a rotation matrix are orthogonal to each other.

The determinant of a rotation matrix is 1.

The inverse of a rotation matrix is equal to its transpose.

... Eq. (5)

This means that the rotation matrix of Frame B with respect to Frame A is equal to the



inverse and the transpose of the rotation matrix of Frame A with respect to Frame B. 

Principal Rotation Matrices

Rotation about the z-axis

If a reference frame (Frame A) is rotated by an angle  about the z-axis to obtain a 

new frame (Frame B), the rotation matrix of the new frame is

... Eq. (6)

Fig. 5: Rotation about the z-axis



Rotation about the y-axis

If a reference frame (Frame A) is rotated by an angle  about the y-axis to obtain a 

new frame (Frame B), the rotation matrix of the new frame is

... Eq. (7)

Fig. 6: Rotation about the y-axis

Rotation about the x-axis



If a reference frame (Frame A) is rotated by an angle  about the x-axis to obtain a 

new frame (Frame B), the rotation matrix of the new frame is

... Eq. (8)

Fig. 7: Rotation about the-x axis

Cascade Rotations

The final orientation of three successive rotations made about moving axes (see Fig. 

8) is the same as the final orientation of the three same rotations taken in the opposite

order about fixed axes (see Fig. 9). Here, moving axes refers to the new axes 



obtained after each rotation. 

Fig. 8: Three rotations about moving axes

Fig. 9: Three rotations about fixed axes

Mathematically, 

... Eq. (9)

The following video shows a comparison of the final orientations of a coordinate 

system after three successive rotations made about fixed and moving axes in the 

same order. The frame on the right is rotated about its moving axes and the frame on 

the left is rotated about fixed axes. The red axis corresponds to the x-axis, the green 

axis corresponds to the y-axis and the blue axis corresponds to the z-axis (order of 

rotations: 0.5 rad about z-axis, 0.75 rad about y-axis, 1 rad about x-axis).



Video Player

Video 1: Rotations about fixed and moving axes (some order).

As discussed above, since one frame rotates about its moving axes and the other 

rotates about fixed axes, the two final orientations are different. 

The next video also shows a comparison of the final orientations of a coordinate 

system after three successive rotations made about fixed and moving axes. However,

for this case, the order of rotations for the frame rotating about fixed axes is the 

opposite to the order for the frame rotating about its moving axes. The frame on the 

right is rotated about its moving axes and the frame on the left is rotated about fixed 

axes. Once again, the red axis corresponds to the x-axis, the green axis corresponds 

to the y-axis and the blue axis corresponds to the z-axis (order of rotations for the 

frame rotating about moving axes: 0.5 rad about z-axis, 0.75 rad about y-axis, 1 rad 

about x-axis).



Video Player

Video 1: Rotations about fixed and moving axes (some order).

For this case, the orientations of both frames are the same at the end. 

Steps to create the simulations

Euler Angle Representations

The Euler angle representations are commonly used representations that describe 

orientations. These representations describe an orientation using three successive 

rotations. Since rotation is a motion with three degrees of freedom, a set of three 

independent parameters are sufficient to describe an orientation in space. 

Roll-Pitch-Yaw Angles

This representation describes an orientation using a set of three successive 



rotations about a fixed frame.  

Fig. 14: Three rotations about fixed axes

The angle  (rotation about the x-axis) is called the roll angle, the angle  (rotation 

about the y-axis) is called the pitch angle and the angle  (rotation about the z 

axis) is called the yaw angle.

The resulting rotation matrix of the three rotations is

... Eq. (10)

Since the multiplication of matrices do not usually commute, the order of the 

rotations is important. 

If a rotation matrix is given, the roll-pitch-yaw angles can be calculated using the 

following equations:

... Eqs. (11) to (13)

where  corresponds to the term in the  row and  column of the rotation 



matrix.

z-y-z Euler Angles

This representation describes an orientation using a set of three successive 
rotations about moving axes. 

Fig. 15: Three rotations about moving axes (z-y-z angles)

The resulting rotation matrix of the three rotations is

... Eq. (14)

If a rotation matrix is given, the z-y-z angles can be calculated using the following 

equations:

... Eqs. (15) to (17)

Example 1: Euler Angles



(2.2.4.3.4)(2.2.4.3.4)

(2.2.4.3.1)(2.2.4.3.1)

(2.2.4.3.3)(2.2.4.3.3)

(2.2.4.3.2)(2.2.4.3.2)

(2.2.4.3.5)(2.2.4.3.5)

Problem Statement: The rotation matrix of Frame B with respect to a reference 

frame A is  . Find the roll-pitch-yaw angles and the z-y-z 

angles.

Solution:
The rotation matrix is:

The roll, pitch and yaw angles are (in rad):

1.099543058

1.410139396

0.7853981634

The z-y-z angles are (in rad):

1.244011150

0.5663241952



(2.2.4.3.6)(2.2.4.3.6)0.3457940165

Coordinate Transformations

Fig. 16: Spatial displacement

Consider the point  in Fig. 16. Its position vector relative to Frame A can be found using 

the following vector sum:



... Eq. (18)

This can be written as

... Eq. (19)

where  is the rotation matrix of Frame B with respect to Frame A,  is the position 

vector of the origin  of Frame B with respect to Frame A and  is the position vector 

of point  with respect to Frame B. This is the general transformation of a position vector 

from one frame to another. To make this equation more compact, the concepts of 

homogeneous coordinates and homogeneous transformation matrix are introduced.

 

Homogeneous Transformation Matrix

The homogeneous transformation matrix is a 4x4 matrix that is defined for mapping a 

position vector from one coordinate system to another. The matrix has the following 

form

... Eq. (20)

Using this matrix we can rewrite Eq. (19) as

... Eq. (21)



Here and are 4 dimensional vectors that are called 

homogeneous position vectors. They simply allow for the transformations to be written

and computed in a compact form. The first three elements of a homogeneous position

vector are the components of the corresponding position vector and the fourth 

element is 1.  By introducing a new notation to represent homogeneous vectors, Eq. 

(21) can be written as

... Eq. (22)

Inverse of a Homogeneous Transformation Operator

... Eq. (23)

Successive Transformations



Fig. 17: Three reference frames

Consider the point  in Fig. (17). The homogeneous position vector of point  with 

respect of Frame C is . To find the position vector of the point with respect to Frame

B, the following transformation is required

... Eq. (24)

Similarly, to find the position vector of point  with respect to Frame C, the following 

transformations are required

... Eq. (25)

This means that 

... Eq. (26)

These steps show that multiplying the transformation matrices is equivalent to taking 

successive transformations. The following is the transformation matrix for two 

successive transformations. 



... Eq. (27)

Example 2: Robot Arm (with MapleSim)

Fig. 18: Three segment robotic arm

Problem Statement: A robot arm (see Fig. 18), consisting of three segments, has end  

fixed to the ground and end  free to perform tasks. The arm has three joints and each one 

has its own frame of reference. The orientation of Frame B with respect to Frame A is 

, the position vector of the origin of Frame B with respect to Frame A

is , the orientation of Frame C with respect to Frame B is 



, the position vector of the origin of Frame C with respect to 

Frame B is  and the position vector of the point  with respect to Frame C is 

 (all lengths are in meters). Find the position vector of  with respect to Frame A.

Analytical Solution

To find the position vector of point  w.r.t Frame A, we have to transform the given 

position vector  from Frame C to Frame B and then from Frame B to Frame A. The 

first step is to write the transformation matrices: 

and 

The homogeneous position vector of point  w.r.t Frame C is



(3.1.1)(3.1.1)

1. 1. 

Now, these three matrices can be multiplied to obtain the homogeneous position vector 

of point  w.r.t Frame A.

Therefore, the position vector of point  with respect to Frame A is  (m).

Solution with MapleSim

Constructing the model

Step 1: Insert component

Drag the following components into the workspace:

Table 3: Components and locations

Component Location

Multibody > 
Bodies and 

Frames



2. 2. 

(3 required)

Multibody > 
Bodies and 

Frames

(3 required)

Multibody > 
Visualization

Multibody > 
Sensors

Copy the Axes subsystem created in the Cascade Rotations subsection and 

paste it twice into the workspace (or follow the steps provided in that subsection 

to create the subsystem again). 

Step 2: Connect components

Connect the subsystems as shown in the following diagram.



3. 3. 
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5. 5. 

Fig. 19: Robot arm component diagram

Step 3: Set the component parameters

Click the Rigid Body Frame component connected to the Fixed Frame 

component and enter  for the x,y,z offset ( ). 

Select Rotation Matrix in the drop-down menu for TypeR and enter 

 for [R]. This is the transpose (and the inverse) of . A Rigid 

Body Frame component provides a frame of reference (frame_b) that has a 

fixed displacement ( ) and a fixed orientation ( [R] ) relative to another frame 

of reference (frame_a). 

Click the next Rigid Body Frame component in the chain and enter for 

the x,y,z offset ( ).

Select Rotation Matrix in the drop-down menu for TypeR and enter 

 for [R]. This is the transpose (and the inverse) of .

Click the third Rigid Body Component and enter 



3. 3. 

4. 4. 
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6. 6. 

 for the x,y,z offset (

).

Click the Absolute Translation sensor component and select Inertial in the

Frame drop-down menu. Frame A is the ground frame and coincides with the 

inertial frame (to measure the position of the point  relative to another frame a

Relative Translation sensor component can be used). 

Step 4: Run the Simulation

Attach a Probe to the r port of the Absolute Translation Sensor component. 

Click the Probe and select 1, 2, and 3 in the Inspector Pane.  

Change the Simulation duration ( ) in the Settings Pane to 0.1 s or any other 

small value. Since there is no motion involved the duration of the simulation is 

not important. 

Click Run Simulation ( ). 

This simulation outputs three plots that give the position of the point  with respect to 

Frame A (see Fig. 20). Since the model does not move, the plots will show horizontal 

lines. The results of these plots match the results obtained analytically. 

Fig. 20: Simulation results

Fig. 21 shows the 3-D visualization of the robot arm. The three sets of axes correspond 



5. 5. 

to Frames A, B and C.

Fig. 21: 3-D visualization
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